Rainbow Ramsey Theorems for Colorings Establishing Negative Partition Relations

نویسنده

  • András Hajnal
چکیده

Given a function f a subset of its domain is a rainbow subset for f if f is one to one on it. We start with an old Erdős Problem: Assume f is a coloring of the pairs of ω1 with three colors such that every subset A of ω1 of size ω1 contains a pair of each color. Does there exist a rainbow triangle ? We investigate rainbow problems and results of this style for colorings of pairs establishing negative “square bracket” relations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indestructible Colourings and Rainbow Ramsey Theorems

We show that if a colouring c establishes ω2 6 → [ (ω1 : ω) ] 2 then c establishes this negative partition relation in each Cohen-generic extension of the ground model, i.e. this property of c is Cohen-indestructible. This result yields a negative answer to a question of Erdős and Hajnal: it is consistent that GCH holds and there is a colouring c : [ ω2 ]2 −→ 2 establishing ω2 6 → [ (ω1 : ω) ] ...

متن کامل

Complete Bipartite Graphs with No Rainbow Paths

Motivated by questions in Ramsey theory, Thomason and Wagner described the edge colorings of complete graphs that contain no rainbow path Pt of order t. In this paper, we consider the edge colorings of complete bipartite graphs that contain no rainbow path Pt. Mathematics Subject Classification: 05C15, 05C38, 05C55

متن کامل

The strength of the rainbow Ramsey Theorem

The Rainbow Ramsey Theorem is essentially an “anti-Ramsey” theorem which states that certain types of colorings must be injective on a large subset (rather than constant on a large subset). Surprisingly, this version follows easily from Ramsey’s Theorem, even in the weak system RCA0 of reverse mathematics. We answer the question of the converse implication for pairs, showing that the Rainbow Ra...

متن کامل

Rainbow generalizations of Ramsey theory - a dynamic survey

In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs. Revision History • Revision 3: March, 2015. • Revision 2: October, 2014. • Revision 1: July, 2011. • Original: Graphs and Combinatorics, January, 2010. [73] If you have corrections, updates or new results which fit the scope of this work, please contact Colton Magnant at [email protected].

متن کامل

Edge-colorings avoiding rainbow and monochromatic subgraphs

For two graphs G and H , let the mixed anti-Ramsey numbers, maxR(n; G, H), (minR(n; G, H)) be the maximum (minimum) number of colors used in an edge-coloring of a complete graph with n vertices having no monochromatic subgraph isomorphic to G and no totally multicolored (rainbow) subgraph isomorphic to H . These two numbers generalize the classical anti-Ramsey and Ramsey numbers, respectively. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007